Effect of Base Stiffness in the Performance of Slender Masonry Walls

Alan Alonso Rivers *Postdoctoral Fellow* Carlos "Lobo" Cruz-Noguez *Associate Professor* University of Alberta 2023 TMS Annual Meeting Albuquerque November 9, 2023

Outline

- Background
- Experimental Study
- Numerical Simulation
- Conclusions

CSA S304 requirements for very slender walls

- Minimum wall thickness (t >140 mm)
- Ductile behaviour ($\rho \leq \rho_{balanced}$)
- Low axial loads (< $10\% f'_m A_e$)
- Pinned-pinned boundary conditions (k = 1.0)

Neglecting the stiffness of the foundation: Engineering significance

- Underestimation of capacity
- Moments that occur at the base may lead to unexpected behaviour

<section-header><image><image>

Parametric Study Results \rightarrow Equivalent RBS per Soil type

Sand

D_f	<i>B_f</i> (m)	Loose	Medium	Dense		
(m)		RBS (kN-m/rad)				
0.3	0.6	80 - 95	200 - 290	320 - 460		
0.3	0.8	210 - 300	530 - 730	1,500 - 2,260		
0.3	1.0	720 - 840	4,800 - 5,600	40,600 - 41,550		
0.3	1.2	4,600 - 5,300	14,000 - 14,960	56,200 - 56,400		
0.6	0.6	170 - 250	300-430	420 - 600		
0.6	0.8	490 - 650	1,300 - 1,780	10,400 - 19,950		
0.6	1.0	3,000 - 3,400	9,800 - 10,600	43,600 - 44,050		
0.6	1.2	7,250 - 7,500	24,800 - 26,600	56,800 - 56,900		
0.9	0.6	250-400	350 - 550	510 - 700		
0.9	0.8	950-1,170	3,800-4,850	28,800 - 30,550		
0.9	1.0	5,200 - 5,500	17,800 - 19,600	45,250 - 45,450		
0.9	1.2	8,700 - 9,070	28,350 - 28,500	57,200 - 57,250		
1.2	0.6	360 - 500	490 - 660	700 - 870		
1.2	0.8	2,100 - 2,500	8,500 - 9,500	32,300 - 33,100		
1.2	1.0	6,250 - 6,500	22,100 - 22,250	45,800 - 45,900		
1.2	1.2	11.700 - 12.300	28,800 - 28,900	57.500 - 57.550		

	Clay								
D_f	B _f	Soft	Medium	Stiff					
(m)	(m)								
0.3	0.6	110-150	250 - 370	350 - 520					
0.3	0.8	240 - 340	640 - 860	2,700 - 4,100					
0.3	1.0	580 - 750	8,500 - 8,900	23,200 - 23,800					
0.3	1.2	3,120 - 3,450	12,850 - 13,000	32,900 - 33,150					
0.6	0.6	140 - 200	300-450	430 - 600					
0.6	0.8	300 - 410	1,800 - 3,000	8,300 - 12,000					
0.6	1.0	950-1,250	9,300 - 9,520	24,650 - 24,950					
0.6	1.2	3,450 - 3,700	12,900 - 13,000	32,750 - 33,000					
0.9	0.6	140 - 190	350 - 500	500 - 700					
0.9	0.8	340 - 450	4,200 - 5,350	15,500 - 16,550					
0.9	1.0	1,650 - 1950	9,700 - 9,850	25,200 - 25,500					
0.9	1.2	3,800 - 4,000	13,000 - 13,150	33,050 - 33,300					
1.2	0.6	150 - 200	390 - 570	650 - 850					
1.2	0.8	400 - 480	5,750 - 6,150	17,150 - 17,650					
1.2	1.0	1,500 - 1,800	9,700 - 9,850	25,200 - 25,350					
1.2	1.2	4,050 - 4,200	13,150 - 13,250	33,350 - 33,600					

		by 10% 💻	y 10%		
h/t	RBS (kN-m/rad)	Pe (kN)	P _{cr} (kN)	k _{calculated}	k _{proposed}
25	80 - 150	146	182 - 200	0.9	1.0
25	170 - 650	146	205 - 259	0.8	0.9
25	> 700	146	262 - 313	0.7	0.8
30	80-110	100	128 - 134	0.9	1.0
30	150 - 530	100	140 – 177	0.8	0.9
30	> 580	100	180 - 214	0.7	0.8
35	80	73	99	0.9	1.0
35	110 - 360	73	105 - 129	0.8	0.9
35	> 420	73	1 31 – 162	0.7	0.8
40	80	58	78	0.9	1.0
40	110 - 360	58	82 - 103	0.8	0.9
40	> 420	58	104 - 125	0.7	0.8

Conclusions

Conclusions

The wall-foundation interaction is an untapped source of stiffness that enhances the out-of-plane performance of masonry walls, increasing their capacity and decreasing their lateral deflections

The increased capacity may be important for capacity-controlled buildings (performance-based design)

Even a shallow foundation on weak soil provides some base stiffness, making a pinned base difficult to achieve in the wall-foundation-soil interaction

