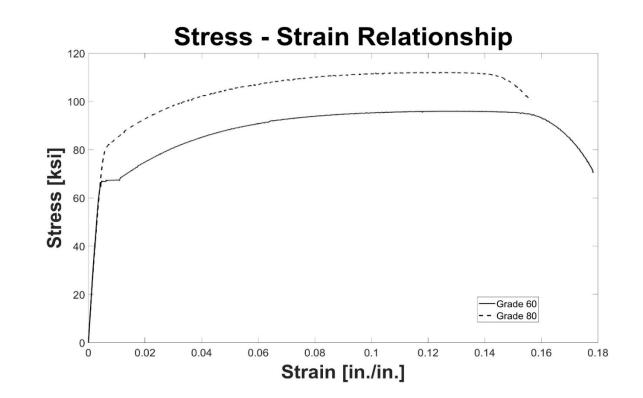

## Creating a Roadmap to Adoption of High Strength Steel in Structural Masonry

Dimitrios Kalliontzis Assistant Professor University of Houston

<u>Collaborators:</u> Omar Khalid, MSc Student, University of Houston Waleed Khan, PhD Student, University of Houston 2022 Annual Meeting Denver, CO October 13<sup>th</sup>






There is a continuing trend of **increasing** availability of r/f of **higher grades** by the steel industry

## Motivation

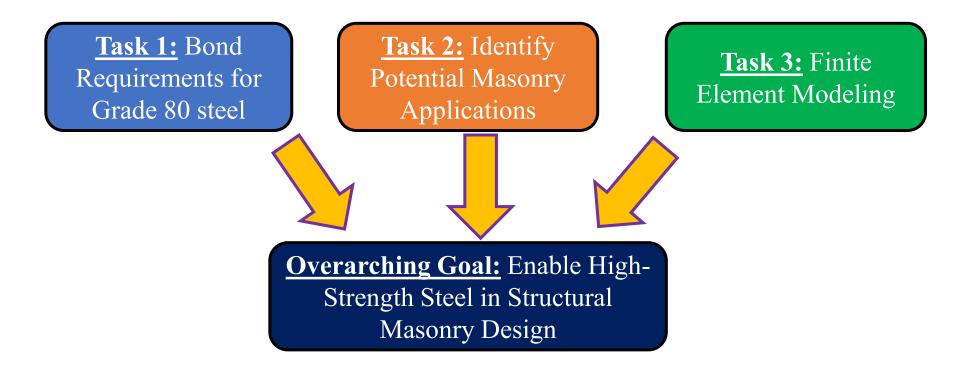
### □ Why high-strength steel?

- Gain in member strength
- Reduce steel congestion
- Reduce material and construction cost
- Reduce building carbon footprint
- (Some reduction in ductility)



**Broaden masonry design options** that are available to engineers **Improve competitiveness** of structural masonry

## **Current Usage in ACI 318-19**


| Usage                                               | Application                                                                                     |                          | Maximum value of $f_y$ permitted<br>for design calculations, psi |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------|
| Flexure; axial force; and shrinkage and temperature | Special seismic<br>systems                                                                      | Special moment<br>frames | 80,000                                                           |
|                                                     |                                                                                                 | Special structural walls | 100,000                                                          |
|                                                     | Ot                                                                                              | her                      | 100,000                                                          |
| Lateral support of                                  | Lateral support of<br>longitudinal bars; or<br>concrete confinementSpecial seismic systemsOther |                          | 100,000                                                          |
| longitudinal bars; or                               |                                                                                                 |                          | 100,000                                                          |
| concrete confinement                                |                                                                                                 |                          | 80,000                                                           |
| Shear                                               | Special seismic<br>systems                                                                      | Special moment<br>frames | 80,000                                                           |
|                                                     |                                                                                                 | Special structural walls | 100,000                                                          |
|                                                     | Spirals, shear friction, stirrups, ties,<br>hoops                                               |                          | 60,000                                                           |
| Torsion                                             | Longitudinal and transverse                                                                     |                          | 60,000                                                           |

Practically no available research on structural masonry

## **Research Plan**

□ Current Restrictions in TMS 402:

- Maximum allowable stress: 32,000 psi with reference to Grade 60 steel r/f [TMS 402-16, 8.3.3.1]
- Maximum strength: 60,000 psi [*TMS 402-16, 9.1.9.3*]
- See also [*TMS 402-16, 11.1.8.6*]

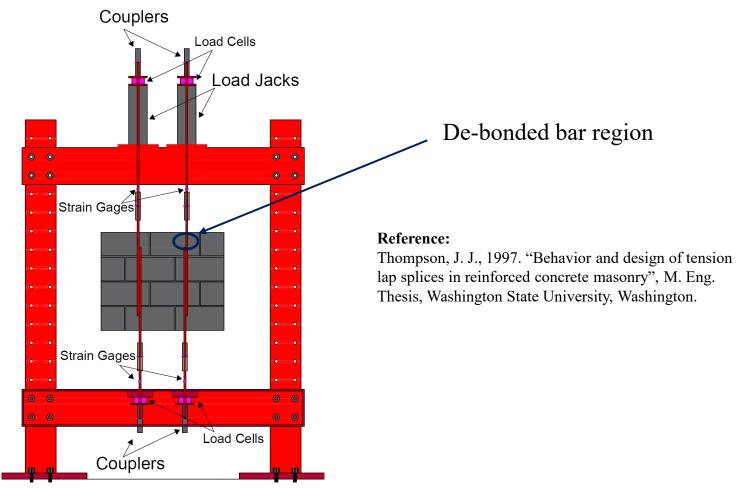


## **Experimental Program Design**

□ What are the development length requirements for **Grade 80** bars in masonry?

$$l_d = \frac{0.13d_b^2 f_y \gamma}{K\sqrt{f_m'}} \quad \text{TMS 402-16}$$

 $f_y$  = yield strength


 $d_b$ = bar diameter

 $\gamma$ = factor accounting for bar size

*K* = factor accounting for cover/spacing to bar

+ Consideration to 1.15 (Grade 80) and 1.3 (Grade 100) factors applied to high-strength steel in ACI 318-19

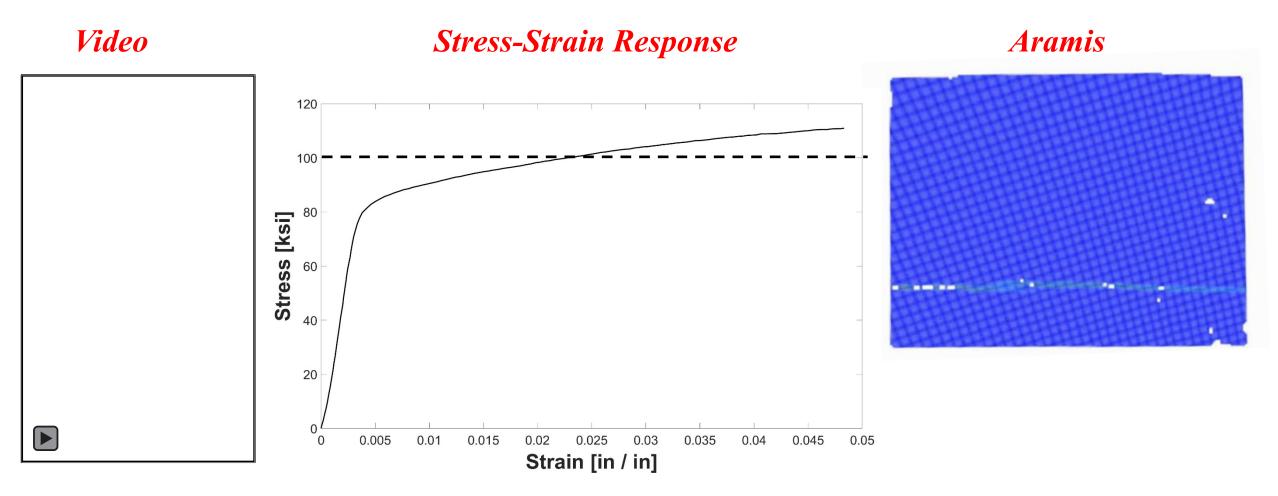
*e.g.*, 
$$l_{d,Grade \ 80} = \mathbf{1}.\mathbf{15} \times \left[\frac{0.13d_b^2 f_y \gamma}{K\sqrt{f'_m}}\right]$$



## **Experimental Program Design**

### □ Test Matrix – Phase I: CMU

| Specimen # | <b>Bar Size</b> | Factor | L <sub>d</sub> Length (in) |
|------------|-----------------|--------|----------------------------|
| 1          | 5               | 1      | 22                         |
| 2          | 5               | 1.15   | 25                         |
| 3          | 5               | 1.3    | 28                         |
| 4          | 7               | 1      | 56                         |
| 5          | 7               | 1.15   | 65                         |
| 6          | 7               | 1.3    | 73                         |






### Phase II: Additional CMU tests & Clay brick tests

## **Preliminary Test Results**

Grade 80 #5 Reinforcing Bars



## **Material Tests**

**CMU** 

### **Grouted Prism**



Grout



### **Reinforcing Steel Un-grouted Prism**

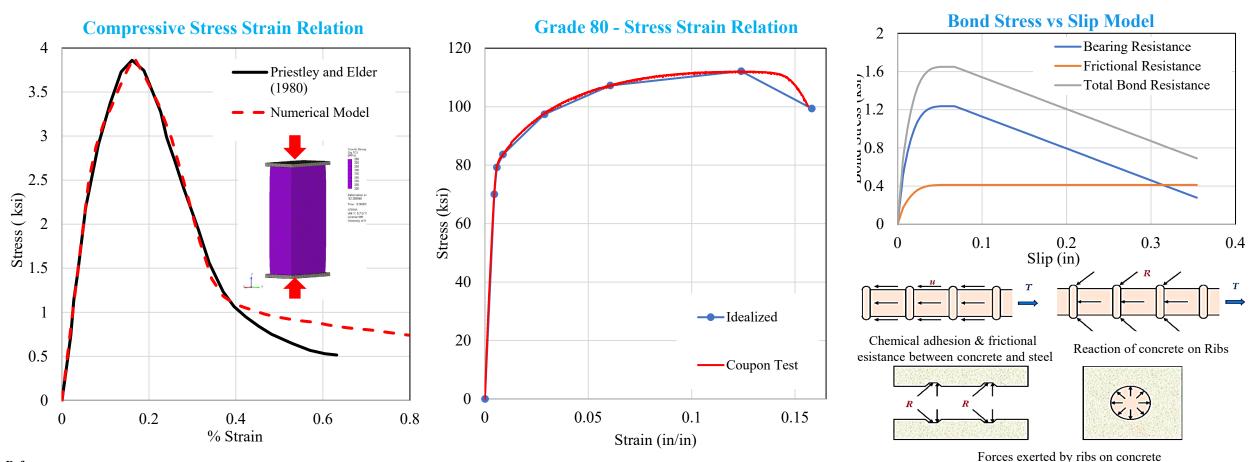




Mortar



## **Summary of Test Results**


| Specimen # | Reinforcement<br>Grade | Splice Length        | General mode of<br>Failure | Failure Load<br>(Stress) | corresponding f'm<br>(ksi) | corresponding f'g<br>(ksi) |
|------------|------------------------|----------------------|----------------------------|--------------------------|----------------------------|----------------------------|
| 1          | 60                     | # 5 @ 35 db<br>22 in | Longitudinal Split         | 25.8 kips<br>83.2 ksi    | 2.6                        | 4.7                        |
| 2          | 80                     | # 5 @ 35 db<br>22 in | Longitudinal Split         | 35.5 kips<br>114.6 ksi   | 3.0                        | 3.4                        |
| 3          | 80                     | # 5 @ 40 db<br>25 in | Coupler Failure            | 32.5 kips<br>104.8 ksi   | 3.0                        | 3.4                        |
| 4          | 80                     | # 5 @ 45 db<br>28 in |                            |                          | 3.0                        | 3.4                        |
| 5          | 80                     | # 7 @ 64 db<br>56 in |                            |                          | 3.0                        | 3.4                        |
| 6          | 80                     | # 7 @ 75 db<br>65 in | Longitudinal Split         | 63.8 kips<br>106.3 ksi   | 3.0                        | 3.4                        |
| 7          | 80                     | # 7 @ 84 db<br>73 in | Longitudinal Split         | 59 kips<br>98.3 ksi      | 3.0                        | 3.4                        |

# **Numerical Simulations**Material Models

Masonry

**Reinforcing Steel** 

### **Bond-Slip**



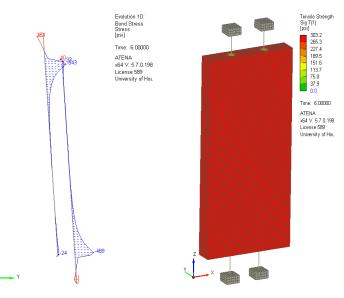
#### **References:**

- 1) Priestley, M.J.N and Elder, D.M , 1980. "Stress-Strain Curves for Unconfined and Confined Concrete Masonry," ACI Journal, Title No.80-19
- 2) Murcia-Delso, J and Shing, P.B, 2015. "Bond-Slip Model for Detailed Finite-Element Analysis of Reinforced Concrete Structures," J. Struct. Eng., 141(4): 04014125
- 3) Tang C.W. and Cheng C.K., 2020. "Modeling Local Bond Stress-Slip Relationships of Reinforcing Bars Embedded in Concrete with Different Strengths," Construction and Building Materials, 13(17), 3701

## **Numerical Simulations**

### □ Verification with past tests

| Specimen | Failure Load                | Range of Experimental values<br>from Thompson (1997) |
|----------|-----------------------------|------------------------------------------------------|
| #5@35db  | 31.53 kips<br>(101.709 ksi) | 26.4 – 31.2 kips                                     |
| #5@48db  | 31.25 kips<br>(100.806 ksi) | 31.2- 32.4 kips                                      |
| #7@35db  | 43.82 kips<br>(72.911 ksi)  | 39.6 – 42 kips                                       |


**Reference:** 

Thompson, J. J., 1997. "Behavior and design of tension lap splices in reinforced concrete masonry", M. Eng. Thesis, Washington State University, Washington.

## **Numerical Simulations**

### Comparisons with Grade 80 bar tests

| Specimen | Panel Dimension (in) | Rebar | Splice<br>Length<br>(in) | Failure Load<br>Predicted<br>(kips) | Experimental<br>Failure Load<br>(kips) |
|----------|----------------------|-------|--------------------------|-------------------------------------|----------------------------------------|
| 1        | 31.625x39.625x7.625  | #5    | 22                       | 33.5                                | 35.5                                   |
| 2        | 31.625x39.625x7.626  | #5    | 25                       | 31.9                                | 32.5                                   |
| 3        | 31.625x39.625x7.627  | #5    | 28                       |                                     |                                        |
| 4        | 63.625x39.625x7.629  | #7    | 56                       |                                     |                                        |
| 5        | 71.625x39.625x7.630  | #7    | 65                       | 67.3                                | 63.8                                   |
| 6        | 79.625x39.625x7.631  | #7    | 73                       | 67.4                                | 59                                     |



## **Usage of Grade 80 Steel – Case Studies**

### Case Studies

- Design of a seven-story masonry load-bearing wall.
- Design of ten one-story in-plane reinforced masonry walls.
- Design a reinforced masonry pilaster.
- Design of Lintel.
- Design of four-story reinforced shear wall.
- Out of Plane wall.

## Summary and Ongoing Work

- Experimental work will continue to better understand the bond behavior of Grade 80 bars in masonry. Selected tests will be repeated. The effect of using fiber-reinforced grout will be studied with the intent to reduce the required development length.
- □ Verified numerical models will be used to study structural **masonry member** responses with Grade 80 bars.
- □ Case studies will identify **benefits in the use of Grade 80** bars and questions that need to be answered by **additional experimental studies**.

## Acknowledgements





### **OINTERSTATE** BRICK













